
Fall Semester 2025

René Vidal
Director of the Center for Innovation in Data Engineering and Science (IDEAS),

Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Deep Generative Models:
Recurrent Neural Networks

Taxonomy of Generative Models
What we’ve learned:
• PPCA
• VAE

What we’ve learned:
• MMs, HMMs, LDSs

What we study now:
• Recurrent Neural Networks

• Many kinds of models
• Markov Chains
• Hidden Markov Models
• Markov Random Fields
• Linear Dynamical Systems
• Recurrent Neural Networks
• Transformers

• This lecture: we focus on Recurrent Neural Networks
• Vanilla RNNs
• Basic applications for Language Modeling
• Training and Issues with RNNs
• LSTMs and GRUs

Autoregressive Models

Applications of RNNs

Finance: Stock Forecasting

NLP: Machine Translation
Healthcare: Gesture Forecasting

• NLP: Machine Translation, Text Classification, POS Tagging
• Healthcare: Gesture Forecasting, EGG
• Computer Vision: Self-driving, Image/Texture Classification
• Finance: Stock Price Forecasting
• Many, many more

• Recurrent Neural Networks (RNNs) are
non-linear dynamical systems described by

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥! +	𝑤!
𝑦! = 𝑓(𝐶𝑧!) +	𝑣!

• Here
• 𝑥!, … , 𝑥" ∈ ℝ# denote the inputs
• 𝑦$, … , 𝑦" ∈ ℝ% denote the outputs
• 𝑧$, … , 𝑧" ∈ ℝ& denote the hidden states, with 𝑧$ the initial state
• 𝐴 ∈ ℝ&×&,𝑊 ∈ ℝ&×#, 𝐶 ∈ ℝ%×& are weight matrices
• 𝑓 and 𝑔 are nonlinear functions (e.g. 𝑓 can be a Softmax function for soft classification)
• No noise 𝑤(, 𝑣(when RNN used for prediction instead of generation.

Recurrent Neural Network (RNNs)

𝑧(

𝑦(

𝑥(

𝑔, 𝐴

𝑊

𝑓, 𝐶

• Linear Dynamic Systems

𝑧(= 𝐴𝑧()! + 𝐵𝑥(+𝑤(, 𝑤(∼ 𝒩(0, 𝑄)
𝑦(= 𝐶𝑧(+ 𝑣(, 𝑣(∼ 𝒩(0, 𝑅)

RNNs vs LDSs
• Recurrent Neural Networks

𝑧(= 𝑔 𝐴𝑧()! +𝑊𝑥(+𝑤(, 	 𝑤(∼ 𝒩(0, 𝑄)
𝑦(= 𝑓(𝐶𝑧() +𝑣(, 𝑣(∼ 𝒩(0, 𝑅)

• Everything is linear
• Can be deterministic or stochastic
• Distributions of 𝑧! and 𝑦! has closed-

form due the Gaussian assumption
• Exact inference via Kalman filter
• Parameter learning via EM algorithm

• Has nonlinearity from 𝑓 and 𝑔
• Can be deterministic or stochastic
• Distributions of 𝑧! and 𝑦! does not

necessarily admit a closed form
• Approximate inference via extended

Kalman filter, particle filter, etc.
• Parameter learning via

Backpropagation Through Time

• Let us consider an RNN with no inputs and
with noise added to the state and output.
• Can we use EM and the Kalman filter for learning and inference with RNNs?
• On the one hand, we can write a probabilistic

model with Gaussian conditionals
• On the other hand, even if 𝑧$ is Gaussian, 𝑧# = 𝑔 𝐴𝑧$ +𝑤! may not!
• Reason: a linear transformation of a Gaussian is Gaussian, but the non-linearity breaks that.

• Why is this a problem?
• A Gaussian is uniquely determined by its mean

and covariance (𝜇, Σ)
• The Kalman filter tracks the evolution of the

mean and covariance of 𝑧(∣ 𝑦!:()!. If this is not
Gaussian, then we cannot track that anymore.

Extended Kalman Filters for RNNs
𝑧! = 𝑔 𝐴𝑧!"# +𝑤!
𝑦! = 𝑓(𝐶𝑧!) + 𝑣!

𝑝(𝑧(∣ 𝑧()!) = 𝒩(𝑔 𝐴𝑧()!), 𝑄
 𝑝(𝑦(∣ 𝑧() = 𝒩(𝑓 𝐶𝑧(), 𝑅

𝐾(= ?Σ(|()!𝐶, 𝐶?Σ(|()!𝐶, + 𝑅
)!

 𝑧̂(-!|(= 𝐴𝑧̂(|()! + 𝐴𝐾((𝑦(− 𝐶𝑧̂(|()!)
 ?Σ(-!|(= 𝐴 ?Σ(|()! − 𝐾(𝐶?Σ(|()! 𝐴, + 𝑄

• How do we apply the Kalman filter to RNNs?
• We linearize 𝑓 and 𝑔 around current

estimate of mean and covariance
using first-order Taylor expansion
• We run a Kalman filtering step using

the Jacobians 𝐽., 𝐽/ of 𝑓 and 𝑔.

• Prediction Update

• We do not have any optimality guarantees.

Extended Kalman Filters for RNNs 𝑧(= 𝑔 𝐴𝑧()! +𝑤(
𝑦(= 𝑓(𝐶𝑧() + 𝑣(

𝐾(= ?Σ(|()! C𝐶(
, C𝐶(?Σ(|()! C𝐶(

, + 𝑅
)!

𝑧̂(|(= 𝑧̂(|()! + 𝐾((𝑦(− 𝑓(𝐶𝑧̂(|()!))
?Σ(|(= ?Σ(|()! − 𝐾(C𝐶(?Σ(|()!

𝑧̂(-!|(= 𝐴𝑧̂(|(
?Σ(-!|(= 𝐴?Σ(|(𝐴, + 𝑄

𝑧̂(-!|(= 𝑔(𝐴𝑧̂(|()	
?Σ(-!|(= C𝐴(?Σ(|(C𝐴(

, + 𝑄

𝑧̃(= C𝐴(𝑧̃()! +𝑤(
𝑦(= C𝐶(𝑧̃(+ 𝑣(

C𝐴(≔ 𝐽/ 𝐴𝑧̂()!|()! 𝐴
C𝐶(≔ 𝐽. 𝐶𝑧̂(|()! 𝐶

𝐾(= ?Σ(|()!𝐶, 𝐶?Σ(|()!𝐶, + 𝑅
)!

𝑧̂(|(= 𝑧̂(|()! + 𝐾((𝑦(− 𝐶𝑧̂(|()!)
?Σ(|(= ?Σ(|()! − 𝐾(𝐶?Σ(|()!

Unrolling and Parameter Tying
• Rather than treating an RNN as a neural network with recurrent inputs and

outputs, we can unroll the network such that it becomes a feed-forward network

• Here 𝐴, 𝐶,𝑊 are the same matrices for all timestep, known as Parameter Tying

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥!
𝑦! = 𝑓(𝐶𝑧!)

Apply matrix multiplication & function Note: Here we omit the noise terms 𝑤! and 𝑣! for simplicity.

𝑧$ 𝑧!

𝑦!

𝑥!

𝑧2

𝑦2

𝑥2

𝑧"

𝑦"

𝑥"

𝐶 𝐶 𝐶

𝑊𝑊𝑊

𝐴 𝐴

𝑦$

𝐶

Backpropagation Through Time (BPTT)
• The unrolled graph is a well-formed computation graph (which is a directed

acyclic graph), so we can run backpropagation on it
• Parameters are tied across time, derivatives are aggregated across all time steps
• This is known as Backpropagation Through Time

• Question: Why do we want to tie the parameters?
• Reduce the number of parameters to be learned
• Deal with arbitrarily long sequences

• What if we always have short sequences?
• We may untie the parameters, then we would simply have a standard feedforward neural

network instead

𝑧$ 𝑧!

𝑦!

𝑥!

𝑧2

𝑦2

𝑥2

𝑧"

𝑦"

𝑥"

𝐶 𝐶 𝐶

𝑊𝑊𝑊

𝐴 𝐴

Forward pass
Backward pass

F𝑦"F𝑦2

• Given (𝒙, 𝒚), with 𝒙 = 𝑥! !1#
2 and 𝒚 = 𝑦! !1#

2 , we can define different losses
• For a task that requires prediction at each time step 3𝑦!, we can compute the loss
𝑙!(3𝑦! , 𝑦!) for each timestep and sum over all timesteps

ℒ 3𝑦, 𝑦 = 	6
!1#

2
𝑙! 	(3𝑦! , 𝑦!)

• For a task that needs a single prediction, we can compute the final loss ℒ 3𝑦, 𝑦2

Loss Computation in Time

𝑙" 7𝑦", 𝑦" 𝑙# 7𝑦#, 𝑦# 𝑙$ 7𝑦$, 𝑦$

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥!
𝑦! = 𝑓(𝐶𝑧!)

𝑧$ 𝑧!

F𝑦!

𝑥!

𝑧2

𝑥2

𝑧"

𝑥"

𝐶 𝐶 𝐶

𝑊𝑊𝑊

𝐴 𝐴

𝑦! 𝑦2 𝑦"

Apply matrix multiplication & function

• Let us consider using an RNN for a language modeling task. Given some
preceding context, we want the language model to predict the next word:

𝑃 𝑦! = “week” 	𝑦$:!"# = “Homework	2	is	due	next”)

• Suppose we have a set of 𝑁 sentences 𝑦(4) 41#	
6

, where 𝑦(4) = 𝑦#, … , 𝑦2! is a
sentence of length 𝑇4
• If 𝑉 is the set of all possible words, then we can represent each word using a

one-hot vector with size 𝑉 	×	1
• Then using a word embedding matrix 𝐸 ∈ ℝ7×|:|, we can retrieve the word

embedding associated to the current word
• This provides a way for us to go from a word to its mathematical representation

Application of RNNs: Next Word Prediction

ContextNext word

Application of RNNs: Next Word Prediction
• We want each time step of the RNN to select the next word 𝑦! from our

vocabulary, which is a discrete choice. In this case, we can use the Softmax
function for modeling the distribution 𝑃(𝑦! ∣ 𝑧!)
• Using BPTT, we apply cross-entropy loss on the prediction of each timestep

𝑒! = 𝐸𝑥!
𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑒!
3𝑦! = Softmax(𝐶𝑧!)

𝑧$ 𝑧!

F𝑦!

𝑒!

𝑥!

F𝑦2

𝑧2

𝑒2

𝑥2
“Homework” “2”

“2”

F𝑦:

𝑧:

𝑒:

𝑥:
“is”

F𝑦;

𝑧;

𝑒;

𝑥;

F𝑦<

𝑧<

𝑒<

𝑥<
“next”

“is” “due”

“due”

“next” “week”

Word embeddings

Input text

Hidden states

Predicted outputs

𝑙" 𝑙# 𝑙%
𝑦! 𝑦2 𝑦<𝑦: 𝑦;

𝑙& 𝑙'

“2” “is” “due” “next” “week”

True next word
Loss function:

ℒ "𝑦, 𝑦 = 	'
!"#

$
𝑙! 	("𝑦! , 𝑦!)

Application of RNNs: Text Classification
• Another application of RNNs is to summarize the whole sequence into a single

category.
• For example, given the title of a news article, predict the news category
• The entire model can be summarized by:

𝑒(= 𝐸𝑥(
𝑧(= 𝑔 𝐴𝑧()! +𝑊𝑒(
F𝑦 = Softmax(𝐹𝐶 𝑧")

𝑧$ 𝑧!

𝑥!

𝑧2

𝑥2

𝑧"

F𝑦

𝑥"

Fully	Connected
	(FC)

Softmax

“New” “Ice” … “!”

Category:
Food

Title: “New Ice Cream
truck showed up in Amy
Gutmann Hall!”

𝑒! 𝑒2 𝑒"

• While RNNs can capture long-term dependencies, training can be challenging
• Consider a simple RNN model with

output at the last iteration:

• What happens to gradient ;ℒ
;="
	as you go back in time?

Issues with RNN: Exploding/Vanishing Gradients

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥!
3𝑦 = 𝐶𝑧2

𝑧$ 𝑧!

𝑥!

𝑧2

𝑥2

𝑧"

F𝑦

𝑥"

𝑦ℒ

𝜕ℒ
𝜕𝑧!

=
𝜕𝑧2
𝜕𝑧!

⋅
𝜕𝑧:
𝜕𝑧2

⋯
𝜕F𝑦
𝜕𝑧"

⋅
𝜕ℒ
𝜕 F𝑦

= 𝐴,𝐴,𝐴,⋯𝐶,
𝜕ℒ
𝜕 F𝑦

= 𝐶𝐴")! , 𝜕ℒ
𝜕 F𝑦

Assuming 𝑔 = identity If the eigenvalues of 𝐴 are less than 1, gradients vanish;
If greater than 1, gradients explode.

• More generally,

𝜕ℒ
𝜕𝑧!

= 𝐶𝐴2"! > 𝜕ℒ
𝜕 3𝑦
	⟹	

𝜕ℒ
𝜕𝐴

=6
!

𝜕𝑧!
𝜕𝐴

⋅
𝜕ℒ
𝜕𝑧!

=6
!

𝜕𝑧!
𝜕𝐴

⋅ 𝐶𝐴2"! > 𝜕ℒ
𝜕 3𝑦

• Let 𝜆#(𝐴) be the maximum eigenvalue of 𝐴.
• For any initial condition 𝑧$	and a large 𝑇 → ∞

• Exploding: If |𝜆! 𝐴 | > 1, 𝐴" will grow to infinity
• Vanishing: If |𝜆! 𝐴 | < 1, 𝐴" will diminish to zero

• Hence, the gradient involving 𝐴2 terms will also either explode or vanish.

Exploding/Vanishing Gradients: LDS case

• We have to backpropagate through many gradient terms to reach the first time
step
• This means long-range dependencies are difficult to learn (although in theory

they are learnable)

• Solutions:
• Better optimizers (e.g., second order or approximate second order methods)
• Normalization (at each layer to keep gradient norms stable)
• Clever initializations (e.g., start with random orthonormal matrices to prevent gradients

from vanishing)

• Alternative parameterization: LSTMs and GRUs

Issues with RNN: Vanishing Gradients

• Recap of RNN: chain of repeating modules of neural network
• In standard RNN, the repeating network is just a single tanh layer

• Motivation: Vanishing gradients happen because we multiply many gradients
across time, and we want some ways to prevent that

Introduction to Long Short-Term Memory (LSTM)

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

!!"# !! !!$#

• LSTM introduces cell states 𝑐!
• Each repeating module has three gates to update and control the cell state: forget gate,

input gate, and output gate

Long Short-Term Memory (LSTM)

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝑓(= 𝜎 𝑊. 𝑧()!, 𝑥(
𝑖(= 𝜎 𝑊= 𝑧()!, 𝑥(
\𝑐(= tanh(𝑊> 𝑧()!, 𝑥()
𝑐(= 𝑓(∗ 𝑐()! + 𝑖(∗ \𝑐(
𝑜(= 𝜎 𝑊? 𝑧()!, 𝑥(
𝑧(= 𝑜(∗ tanh(𝑐()

!!"# !! !!$#

• Cell states 𝑐!
• Runs straight down the entire chain, with

only some linear interactions
• In this way, information can flow through

time without gradients vanishing

LSTM: Cell State

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• To update and control the cell
states, LSTM introduced gates:
• A sigmoid neural network and a

pointwise multiplication operation
• The sigmoid layer outputs

numbers between 0 and 1,
controlling how much information
could go through

!!

!!!!"#

"!"# "!

"!#

• Forget gate controls how much information to forget from the previous
cell state 𝑐!"#

𝑓! = 𝜎 𝑊" 𝑧!#$, 𝑥! “

LSTM: Forget Gate

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

!!

!!!!"#

"!"# "!

"!#

• Input gate decides which new information to store in the cell state

𝑖! = 𝜎 𝑊% 𝑧!#$, 𝑥! “input gate”
)𝑐! = tanh(𝑊& 𝑧!#$, 𝑥!) “input gate”

LSTM: Input Gate

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Then update cell state by
𝑐! = 𝑓! ∗ 𝑐!"# + 𝑖! ∗ 𝑐!

!!

!!!!"#

"!"!"#

"!#

• Output gate decides what to output

𝑜! = 𝜎 𝑊' 𝑧!#$, 𝑥! outout

𝑧! = 𝑜! ∗ tanh(𝑐!) outpt

LSTM: Output Gate

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

!!

!!!!"#

"!"!"#

"!#

• Forget gate 𝑓!: decides what to forget from the previous cell state
• Input gate 𝑖!: decides what new information to add
• Output gate 𝑜!: decides what to output to the next layer
• Constant path through cell states 𝑐! helps prevent vanishing gradients

𝑓! = 𝜎 𝑊? 𝑧!"#, 𝑥! Forget gate
𝑖! = 𝜎 𝑊4 𝑧!"#, 𝑥! Input gate
𝑐! = tanh(𝑊@ 𝑧!"#, 𝑥!)
𝑐! = 𝑓! ∗ 𝑐!"# + 𝑖! ∗ 𝑐! Update cell state
𝑜! = 𝜎 𝑊A 𝑧!"#, 𝑥! Output gate
𝑧! = 𝑜! ∗ tanh(𝑐!)

Why LSTMs work

• Another famous variant of the vanilla RNNs is Gated Recurrent Neural Network
• Instead of a memory cell, it uses what’s known as a Gated Recurrent Unit (GRU)

• On a high level, rather than using forget, input and output gates like LSTM
• GRU uses a weighted sum of two hidden states

𝑧! = 1 − 𝑠! 	⨀ 𝑧!"# + 𝑠! 	⨀𝑧!, where 𝑧! = tanh(𝑊[𝑥! 	; 𝑟! 	⨀ 𝑧!"#])

where 𝑠! denotes the update gate,
 𝑟! denotes the reset gate
• Empirically, GRUs perform just
 as well as LSTMs, but much
 more efficient because they
 have fewer gates

Other Variants: Gated Recurrent Neural Networks

Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” (2014) : https://arxiv.org/pdf/1412.3555v1.pdf

s

z z

Gated Recurrent Neural Networks
• Gated Recurrent Unit (GRU) has two gates:
• Update gate 𝑠(: decides how much the unit update its activation

𝑠(= 𝜎(𝑊@𝑥(+ 𝑈@𝑧()!)
• Reset gate 𝑟(: decides how much information to forget (reset)

𝑟(= 𝜎(𝑊A𝑥(+ 𝑈A𝑧()!)

• Hidden state 𝑧! is updated by a weighted sum of the previous activation 𝑧!"# and
a candidate activation 𝑧!:

𝑧! = 1 − 𝑠! 	⨀ 𝑧!"# + 𝑠! 	⨀𝑧!
𝑧! = tanh(𝑊[𝑥! 	; 𝑟! 	⨀ 𝑧!"#])

where ⨀ is an element-wise multiplication
s

z z

Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” (2014) : https://arxiv.org/pdf/1412.3555v1.pdf

• Vanilla RNNs/LSTMs only go forward in time 𝑡 = 1, 2, … , 𝑇
• This makes it hard trajectories with long histories, i.e., when 𝑇 is large

• Proposed Modification: To have another trajectory that goes backward in time
• And the output 𝑃 𝑦(𝑧BCDEFDG, 𝑧HFIJEFDG) depends on forward and backward hidden

states

• Intuition from NLP: knowing a word
 means knowing what comes before
 and after the word
• Experiments show this reduces
 the vanishing gradient problem

Other Variants: Bidirectional-RNNs

Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging." (2015).
*Figure source: Ihianle et al. “A Deep Learning Approach for Human
Activities Recognition From Multimodal Sensing Devices.” (2020).

• Conclusion: Once you know what the building blocks are, you can create different
variants that are suitable for your task

• This is also not limited to RNNs. As we will see in next lecture, for example, we
can combine RNNs with VAEs for more complicated tasks

Other Variants

