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Taxonomy of Generative Models
What we’ve learned:
• PPCA
• VAE

What we’ve learned:
• MMs, HMMs, LDSs

What we study now:
• Recurrent Neural Networks



• Many kinds of models
• Markov Chains
• Hidden Markov Models
• Markov Random Fields
• Linear Dynamical Systems
• Recurrent Neural Networks
• Transformers

• This lecture: we focus on Recurrent Neural Networks
• Vanilla RNNs
• Basic applications for Language Modeling
• Training and Issues with RNNs
• LSTMs and GRUs

Autoregressive Models



Applications of RNNs

Finance: Stock Forecasting

NLP: Machine Translation
Healthcare: Gesture Forecasting

• NLP: Machine Translation, Text Classification, POS Tagging
• Healthcare: Gesture Forecasting, EGG 
• Computer Vision: Self-driving, Image/Texture Classification
• Finance: Stock Price Forecasting
• Many, many more



• Recurrent Neural Networks (RNNs) are
non-linear dynamical systems described by

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥!  +	𝑤!
𝑦! = 𝑓(𝐶𝑧!) +	𝑣!

• Here
• 𝑥!, … , 𝑥" ∈ ℝ# denote the inputs
• 𝑦$, … , 𝑦" ∈ ℝ% denote the outputs
• 𝑧$, … , 𝑧" ∈ ℝ& denote the hidden states, with 𝑧$ the initial state
• 𝐴 ∈ ℝ&×&,𝑊 ∈ ℝ&×#, 𝐶 ∈ ℝ%×& are weight matrices
• 𝑓 and 𝑔 are nonlinear functions (e.g. 𝑓 can be a Softmax function for soft classification)
• No noise 𝑤(	, 𝑣(	when RNN used for prediction instead of generation.

Recurrent Neural Network (RNNs)
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• Linear Dynamic Systems

𝑧( = 𝐴𝑧()! + 𝐵𝑥( +𝑤(, 𝑤( ∼ 𝒩(0, 𝑄)
𝑦( = 𝐶𝑧( + 𝑣(,                      𝑣( ∼ 𝒩(0, 𝑅)

RNNs vs LDSs
• Recurrent Neural Networks

𝑧( = 𝑔 𝐴𝑧()! +𝑊𝑥(  +𝑤(, 	 𝑤( ∼ 𝒩(0, 𝑄)
𝑦( = 𝑓(𝐶𝑧() +𝑣( ,             𝑣( ∼ 𝒩(0, 𝑅)

• Everything is linear
• Can be deterministic or stochastic
• Distributions of 𝑧!  and 𝑦!  has closed-

form due the Gaussian assumption
• Exact inference via Kalman filter
• Parameter learning via EM algorithm

• Has nonlinearity from 𝑓 and 𝑔
• Can be deterministic or stochastic
• Distributions of 𝑧!  and 𝑦!  does not 

necessarily admit a closed form
• Approximate inference via extended 

Kalman filter, particle filter, etc.
• Parameter learning via 

Backpropagation Through Time



• Let us consider an RNN with no inputs and
with noise added to the state and output.
• Can we use EM and the Kalman filter for learning and inference with RNNs?
• On the one hand, we can write a probabilistic 

model with Gaussian conditionals
• On the other hand, even if 𝑧$ is Gaussian, 𝑧# = 𝑔 𝐴𝑧$ +𝑤!  may not!
• Reason: a linear transformation of a Gaussian is Gaussian, but the non-linearity breaks that.

• Why is this a problem? 
• A Gaussian is uniquely determined by its mean 

and covariance (𝜇, Σ)
• The Kalman filter tracks the evolution of the 

mean and covariance of 𝑧( ∣ 𝑦!:()!. If this is not
Gaussian, then we cannot track that anymore.

Extended Kalman Filters for RNNs
𝑧! = 𝑔 𝐴𝑧!"# +𝑤!
𝑦! = 𝑓(𝐶𝑧!) + 𝑣!

𝑝(𝑧( ∣ 𝑧()!) = 𝒩(𝑔 𝐴𝑧()!), 𝑄
     𝑝(𝑦( ∣ 𝑧() = 𝒩(𝑓 𝐶𝑧(), 𝑅

𝐾( = ?Σ(|()!𝐶, 𝐶?Σ(|()!𝐶, + 𝑅
)!

 𝑧̂(-!|( = 𝐴𝑧̂(|()! + 𝐴𝐾((𝑦( − 𝐶𝑧̂(|()!)
 ?Σ(-!|( = 𝐴 ?Σ(|()! − 𝐾(𝐶?Σ(|()! 𝐴, + 𝑄



• How do we apply the Kalman filter to RNNs?
• We linearize 𝑓 and 𝑔 around current

estimate of mean and covariance 
using first-order Taylor expansion
• We run a Kalman filtering step using 

the Jacobians 𝐽., 𝐽/ of 𝑓 and 𝑔.

• Prediction                                                 Update

• We do not have any optimality guarantees. 

Extended Kalman Filters for RNNs 𝑧( = 𝑔 𝐴𝑧()! +𝑤(
𝑦( = 𝑓(𝐶𝑧() + 𝑣(

𝐾( = ?Σ(|()! C𝐶(
, C𝐶( ?Σ(|()! C𝐶(

, + 𝑅
)!

𝑧̂(|( = 𝑧̂(|()! + 𝐾((𝑦( − 𝑓(𝐶𝑧̂(|()!))
?Σ(|( = ?Σ(|()! − 𝐾( C𝐶( ?Σ(|()!

𝑧̂(-!|( = 𝐴𝑧̂(|(	
?Σ(-!|( = 𝐴?Σ(|(𝐴, + 𝑄

𝑧̂(-!|( = 𝑔(𝐴𝑧̂(|()	
?Σ(-!|( = C𝐴( ?Σ(|( C𝐴(

, + 𝑄

𝑧̃( = C𝐴(𝑧̃()! +𝑤(
𝑦( = C𝐶(𝑧̃( + 𝑣(

C𝐴( ≔ 𝐽/ 𝐴𝑧̂()!|()! 𝐴
C𝐶( ≔ 𝐽. 𝐶𝑧̂(|()! 𝐶

𝐾( = ?Σ(|()!𝐶, 𝐶?Σ(|()!𝐶, + 𝑅
)!

𝑧̂(|( = 𝑧̂(|()! + 𝐾((𝑦( − 𝐶𝑧̂(|()!)
?Σ(|( = ?Σ(|()! − 𝐾(𝐶?Σ(|()!



Unrolling and Parameter Tying
• Rather than treating an RNN as a neural network with recurrent inputs and 

outputs, we can unroll the network such that it becomes a feed-forward network

• Here 𝐴, 𝐶,𝑊 are the same matrices for all timestep, known as Parameter Tying

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥!
𝑦! = 𝑓(𝐶𝑧!)

Apply matrix multiplication & function              Note: Here we omit the noise terms 𝑤! and 𝑣! for simplicity.  
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Backpropagation Through Time (BPTT)
• The unrolled graph is a well-formed computation graph (which is a directed 

acyclic graph), so we can run backpropagation on it
• Parameters are tied across time, derivatives are aggregated across all time steps
• This is known as Backpropagation Through Time

• Question: Why do we want to tie the parameters?
• Reduce the number of parameters to be learned 
• Deal with arbitrarily long sequences

• What if we always have short sequences? 
• We may untie the parameters, then we would simply have a standard feedforward neural 

network instead
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F𝑦"F𝑦2

• Given (𝒙, 𝒚), with 𝒙 = 𝑥! !1#
2  and 𝒚 = 𝑦! !1#

2 , we can define different losses  
• For a task that requires prediction at each time step 3𝑦!, we can compute the loss 
𝑙!( 3𝑦! , 𝑦!) for each timestep and sum over all timesteps

ℒ 3𝑦, 𝑦 = 	6
!1#

2
𝑙! 	( 3𝑦! , 𝑦!)

• For a task that needs a single prediction, we can compute the final loss ℒ 3𝑦, 𝑦2

Loss Computation in Time

𝑙" 7𝑦", 𝑦"  𝑙# 7𝑦#, 𝑦#  𝑙$ 7𝑦$ , 𝑦$  

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥!
𝑦! = 𝑓(𝐶𝑧!)
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Apply matrix multiplication & function              



• Let us consider using an RNN for a language modeling task. Given some 
preceding context, we want the language model to predict the next word:

𝑃 𝑦! = “week” 	𝑦$:!"# = “Homework	2	is	due	next”)

• Suppose we have a set of 𝑁 sentences 𝑦(4) 41#	
6

, where 𝑦(4) = 𝑦#, … , 𝑦2!  is a 
sentence of length 𝑇4
• If 𝑉 is the set of all possible words, then we can represent each word using a 

one-hot vector with size 𝑉 	×	1
• Then using a word embedding matrix 𝐸 ∈ ℝ7×|:|, we can retrieve the word 

embedding associated to the current word
• This provides a way for us to go from a word to its mathematical representation

Application of RNNs: Next Word Prediction

ContextNext word



Application of RNNs: Next Word Prediction
• We want each time step of the RNN to select the next word 𝑦!  from our 

vocabulary, which is a discrete choice. In this case, we can use the Softmax 
function for modeling the distribution 𝑃(𝑦! ∣ 𝑧!)
• Using BPTT, we apply cross-entropy loss on the prediction of each timestep

𝑒! = 𝐸𝑥!
𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑒!
3𝑦! = Softmax(𝐶𝑧!)
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!"#

$
𝑙! 	( "𝑦! , 𝑦!)



Application of RNNs: Text Classification
• Another application of RNNs is to summarize the whole sequence into a single 

category.
• For example, given the title of a news article, predict the news category
• The entire model can be summarized by:

𝑒( = 𝐸𝑥(
𝑧( = 𝑔 𝐴𝑧()! +𝑊𝑒(
F𝑦 = Softmax(𝐹𝐶 𝑧" )
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Gutmann Hall!”

𝑒! 𝑒2 𝑒"



• While RNNs can capture long-term dependencies,  training can be challenging
• Consider a simple RNN model with 

output at the last iteration:

• What happens to gradient ;ℒ 
;="
	as you go back in time?

Issues with RNN: Exploding/Vanishing Gradients

𝑧! = 𝑔 𝐴𝑧!"# +𝑊𝑥!
3𝑦 = 𝐶𝑧2
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Assuming  𝑔 = identity If the eigenvalues of 𝐴 are less than 1, gradients vanish; 
If greater than 1, gradients explode. 



• More generally, 

𝜕ℒ
𝜕𝑧!

= 𝐶𝐴2"! > 𝜕ℒ
𝜕 3𝑦
	⟹	

𝜕ℒ
𝜕𝐴

=6
!

𝜕𝑧!
𝜕𝐴

⋅
𝜕ℒ
𝜕𝑧!

=6
!

𝜕𝑧!
𝜕𝐴

⋅ 𝐶𝐴2"! > 𝜕ℒ
𝜕 3𝑦

• Let 𝜆#(𝐴) be the maximum eigenvalue of 𝐴. 
• For any initial condition 𝑧$	and a large 𝑇 → ∞

• Exploding: If |𝜆! 𝐴 | > 1, 𝐴" will grow to infinity
• Vanishing: If |𝜆! 𝐴 | < 1, 𝐴" will diminish to zero

• Hence, the gradient involving 𝐴2  terms will also either explode or vanish. 

Exploding/Vanishing Gradients: LDS case



• We have to backpropagate through many gradient terms to reach the first time 
step
• This means long-range dependencies are difficult to learn (although in theory 

they are learnable) 

• Solutions:
• Better optimizers (e.g., second order or approximate second order methods)
• Normalization (at each layer to keep gradient norms stable)
• Clever initializations (e.g., start with random orthonormal matrices to prevent gradients 

from vanishing)

• Alternative parameterization: LSTMs and GRUs

Issues with RNN: Vanishing Gradients



• Recap of RNN: chain of repeating modules of neural network
• In standard RNN, the repeating network is just a single tanh layer

• Motivation: Vanishing gradients happen because we multiply many gradients 
across time, and we want some ways to prevent that

Introduction to Long Short-Term Memory (LSTM)

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

!!"# !! !!$#



• LSTM introduces cell states 𝑐!
• Each repeating module has three gates to update and control the cell state: forget gate, 

input gate, and output gate

Long Short-Term Memory (LSTM)

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝑓( = 𝜎 𝑊. 𝑧()!, 𝑥(  
𝑖( = 𝜎 𝑊= 𝑧()!, 𝑥(  
\𝑐( = tanh(𝑊> 𝑧()!, 𝑥( )
𝑐( = 𝑓( ∗ 𝑐()! + 𝑖( ∗ \𝑐(
𝑜( = 𝜎 𝑊? 𝑧()!, 𝑥(
𝑧( = 𝑜( ∗ tanh(𝑐()

!!"# !! !!$#



• Cell states 𝑐!
• Runs straight down the entire chain, with 

only some linear interactions
• In this way, information can flow through 

time without gradients vanishing

LSTM: Cell State

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• To update and control the cell 
states, LSTM introduced gates: 
• A sigmoid neural network and a 

pointwise multiplication operation
• The sigmoid layer outputs 

numbers between 0 and 1, 
controlling how much information 
could go through

!!

!!!!"#

"!"# "!

"!#



• Forget gate controls how much information to forget from the previous 
cell state 𝑐!"# 

𝑓! = 𝜎 𝑊" 𝑧!#$, 𝑥!    “

LSTM: Forget Gate

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

!!

!!!!"#

"!"# "!

"!#



• Input gate decides which new information to store in the cell state

𝑖! = 𝜎 𝑊% 𝑧!#$, 𝑥!     “input gate”
)𝑐! = tanh(𝑊& 𝑧!#$, 𝑥! )     “input gate”

LSTM: Input Gate

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Then update cell state by 
𝑐! = 𝑓! ∗ 𝑐!"# + 𝑖! ∗ 𝑐!

!!

!!!!"#

"!"!"#

"!#



• Output gate decides what to output 

𝑜! = 𝜎 𝑊' 𝑧!#$, 𝑥!  outout 

𝑧! = 𝑜! ∗ tanh(𝑐!)    outpt

LSTM: Output Gate

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

!!

!!!!"#

"!"!"#

"!#



• Forget gate 𝑓!: decides what to forget from the previous cell state
• Input gate 𝑖!: decides what new information to add
• Output gate 𝑜!: decides what to output to the next layer
• Constant path through cell states 𝑐!  helps prevent vanishing gradients

𝑓! = 𝜎 𝑊? 𝑧!"#, 𝑥!   Forget gate
𝑖! = 𝜎 𝑊4 𝑧!"#, 𝑥!   Input gate
𝑐! = tanh(𝑊@ 𝑧!"#, 𝑥! )
𝑐! = 𝑓! ∗ 𝑐!"# + 𝑖! ∗ 𝑐!  Update cell state 
𝑜! = 𝜎 𝑊A 𝑧!"#, 𝑥!   Output gate
𝑧! = 𝑜! ∗ tanh(𝑐!)

Why LSTMs work



• Another famous variant of the vanilla RNNs is Gated Recurrent Neural Network
• Instead of a memory cell, it uses what’s known as a Gated Recurrent Unit (GRU)

• On a high level, rather than using forget, input and output gates like LSTM
• GRU uses a weighted sum of two hidden states

𝑧! = 1 − 𝑠! 	⨀ 𝑧!"# + 𝑠! 	⨀𝑧!,  where 𝑧! = tanh(𝑊[𝑥! 	; 𝑟! 	⨀ 𝑧!"#])

where 𝑠!  denotes the update gate,
 𝑟!  denotes the reset gate
• Empirically, GRUs perform just 
   as well as LSTMs, but much 
   more efficient because they 
   have fewer gates

Other Variants: Gated Recurrent Neural Networks

Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” (2014) : https://arxiv.org/pdf/1412.3555v1.pdf

s

z z



Gated Recurrent Neural Networks
• Gated Recurrent Unit (GRU) has two gates:
• Update gate 𝑠(: decides how much the unit update its activation

𝑠( = 𝜎(𝑊@𝑥( + 𝑈@𝑧()!)
• Reset gate 𝑟(: decides how much information to forget (reset)

𝑟( = 𝜎(𝑊A𝑥( + 𝑈A𝑧()!)

• Hidden state 𝑧!  is updated by a weighted sum of the previous activation 𝑧!"# and 
a candidate activation 𝑧!: 

𝑧! = 1 − 𝑠! 	⨀ 𝑧!"# + 𝑠! 	⨀𝑧!  
𝑧! = tanh(𝑊[𝑥! 	; 𝑟! 	⨀ 𝑧!"#])

where ⨀ is an element-wise multiplication
s

z z

Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” (2014) : https://arxiv.org/pdf/1412.3555v1.pdf



• Vanilla RNNs/LSTMs only go forward in time 𝑡 = 1, 2, … , 𝑇
• This makes it hard trajectories with long histories, i.e., when 𝑇 is large

• Proposed Modification: To have another trajectory that goes backward in time
• And the output 𝑃 𝑦(	 𝑧BCDEFDG, 𝑧HFIJEFDG) depends on forward and backward hidden 

states

• Intuition from NLP: knowing a word
   means knowing what comes before
   and after the word 
• Experiments show this reduces
   the vanishing gradient problem

Other Variants: Bidirectional-RNNs

Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging." (2015).
*Figure source: Ihianle et al. “A Deep Learning Approach for Human 
Activities Recognition From Multimodal Sensing Devices.” (2020). 



• Conclusion: Once you know what the building blocks are, you can create different 
variants that are suitable for your task

• This is also not limited to RNNs. As we will see in next lecture, for example, we 
can combine RNNs with VAEs for more complicated tasks

Other Variants


