Deep Generative Models:
Recurrent Neural Networks

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),

Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

& Penn

Taxonomy of Generative Models

_ What we’ve learned:
What we’ve learned: Deep Generative Models PPCA
¢ MMs, HMMs, LDSs ‘ / « VAE
Autc:;i%reelzslve FI::‘S::ISS ed @ variable\ Energy-based
(e.g., PixelCNN)_/ (e.g., RealNVP) models models

Implicit models Prescribed models

What we study now: (e.g., GANSs) (e.g., VAEs)
e Recurrent Neural Networks

Autoregressive Models

* Many kinds of models

* Markov Chains
Hidden Markov Models
 Markov Random Fields
* Linear Dynamical Systems
* Recurrent Neural Networks
* Transformers

* This lecture: we focus on Recurrent Neural Networks
* Vanilla RNNs
* Basic applications for Language Modeling

* Training and Issues with RNNs
* LSTMs and GRUs

Applications of RNNs

* NLP: Machine Translation, Text Classification, POS Tagging

* Healthcare: Gesture Forecasting, EGG

* Computer Vision: Self-driving, Image/Texture Classification

* Finance: Stock Price Forecasting

* Many, many more

X . . . Feature RNN-based Gesture
ECoG Signal Segmentation ; ; s
b extraction and selection decoder recognition

aflg

%E\(b(/
(7

=) == => ‘\l‘f[

Tim Q‘?\)

: - Y1

4

Healthcare: Gesture Forecasting

Encoder

<eos>

Is e

ls
; ; ; 1] ; l 4 ; ; 4 ; ; ;
They are waltching .J ' '
<bos> ardent .

Decoder
gardent

1
Ils reg

NLP: Machine Translation

3600
3400
[
u
=
- 3200
Y]
]
o
=
" 3000
w
0

0
Time (days)

Finance: Stock Forecasting

Recurrent Neural Network (RNNs)

* Recurrent Neural Networks (RNNs) are
non-linear dynamical systems described by

z; = g(Az,_1 + Wx;) + w; o
Ve = f(Cz) + v, r---f-'gy[----- 1
i Foa
* Here S
* X4, ..., x7 € RP denote the inputs W‘
* Vo, .-, Y7 € R™ denote the outputs
* Z, ..., 27 € R? denote the hidden states, with z, the initial state Xt

e A € R W e R¥P ¢ € R™4 are weight matrices
* f and g are nonlinear functions (e.g. f can be a Softmax function for soft classification)
* No noise w; , v when RNN used for prediction instead of generation.

RNNs vs LDSs

* Linear Dynamic Systems

Wi NN(O, Q)
vy ~ N(0,R)

Z = AZt—l + th + W¢,
yt —_ CZt + vt,

* Everything is linear
e Can be deterministic or stochastic

* Distributions of z; and y; has closed-
form due the Gaussian assumption

* Exact inference via Kalman filter
* Parameter learning via EM algorithm

e Recurrent Neural Networks

ze = 9(Azi—1 + W) +wy,
yve = f(Cz) +vg,

Wt NN(O, Q)
vy ~ N(0,R)

* Has nonlinearity from f and g
e Can be deterministic or stochastic

* Distributions of z; and y; does not
necessarily admit a closed form

* Approximate inference via extended
Kalman filter, particle filter, etc.

* Parameter learning via
Backpropagation Through Time

Extended Kalman Filters for RNNSs

* Let us consider an RNN with no inputs and ze = g(Azg 1) + wy
with noise added to the state and output. Ve = f(Cz) + v,

e Can we use EM and the Kalman filter for learning and inference with RNNs?

* On the one hand, we can write a probabilistic p(z¢ | zg—q) = N(9(Az-1), Q)
model with Gaussian conditionals p(ye | ze) = N (f(Cz), R)

* On the other hand, even if z, is Gaussian, z; = g(A4z,) + w; may not!
* Reason: a linear transformation of a Gaussian is Gaussian, but the non-linearity breaks that.

* Why is this a problem?

e A Gaussian is uniquely determined by its mean —
and covariance (u,) Ke = Z4)t—1CT(CZ4)t—1CT + R)
 The Kalman filter tracks the evolution of the ZAt+1|t — AZAt|t—1 + AK, (y; — CZAt|t—1)

mean and covariance of z; | y1.t—¢. If thisisnot | & a a T
) : X = A 2441 — K:CXp 141)A
Gaussian, then we cannot track that anymore. t+1]t (t|t—1 G2t 1) + 0

Extended Kalman Filters for RNNs 2, = g(AzZp_1) + W,
* How do we apply the Kalman filter to RNNs?

* We linearize f and g around current

= f(Cz) + v¢

=

estimate of mean and covariance
using first-order Taylor expansion

e = AZeq + Wy || Ar =]g(Aft—1|t—1)A

CtZt + V¢ ét =]f(CZAﬂt—l)C

* We run a Kalman filtering step using Yt =
the Jacobians J¢, /4 of f and g.
* Prediction Update

ZAt+1|t — AZAt|t
Seere = AL AT +Q

1

ZAt+1|t = g(AZAtlt)
et = AeZeede + 0

* We do not have any optimality guarantees.

A~ A~ -1
Ke = 24)t-1CT(CZ4)t—1CT + R)

Zeit = Zejg—1 T Ke (Ve — CZAt|t 1)
See = Sppp—1 — KeCEppe—q

1

~ ~T(~a ~ T -1
Ki = 2Z¢10-1C¢ (Ct2t|t—1Ct + R)

Zt|t = ZAt|t—1A+ Ke(ye _~f£62t|t—1))
Zt|t — Zt|t—1 - KtCtZt|t—1

Unrolling and Parameter Tying 7 = §Uzecy + W)

* Rather than treating an RNN as a neural network with recurrent inputs and
outputs, we can unroll the network such that it becomes a feed-forward network

Yo Y1 Y2 yr

d d | d
A A

Zg - Zq - Z TTTTTTTT > Zr

w w W|

X1 X2 XT

 Here A, C,W are the same matrices for all timestep, known as Parameter Tying

Note: Here we omit the noise terms w; and v; for simplicity. —— Apply matrix multiplication & function

Backpropagation Through Time (BPTT)

* The unrolled graph is a well-formed computation graph (which is a directed
acyclic graph), so we can run backpropagation on it

* Parameters are tied across time, derivatives are aggregated across all time steps

* This is known as Backpropagation Through Time
i V2 T

C C C
* Question: Why d t to tie th ters? N —V L EEL
: Yy G0 we Want 1o tie the parameters: Zg —)— 71 —Zy 3==2Z7
* Reduce the number of parameters to be learned wll wi] wl|
* Deal with arbitrarily long sequences X4 Xy X

— Forward pass
- Backward pass

* What if we always have short sequences?

* We may untie the parameters, then we would simply have a standard feedforward neural
network instead

Loss Computation in Time o= gz W)
* Given (x,y), with x = {x;}{_; and y = {y,}{=1, we can define different losses

* For a task that requires prediction at each time step y;, we can compute the loss
l;(V¢, y:) for each timestep and sum over all timesteps

L,y) = Z lt Ve Vi)

t=1
* For a task that needs a single prediction, we can compute the final loss L(¥, y;)
Y1 Y2 T
AhGuy) ALG2,32) Al Gryr)
V1 Y2 %y
¢l c| c|

A A

Zg - Zq - Zp TTTTTTTTT > Zr
W‘ W‘ W]
X1 X9 XT

= Apply matrix multiplication & function

Application of RNNs: Next Word Prediction

* Let us consider using an RNN for a language modeling task. Given some
preceding context, we want the language model to predict the next word:

P(y, = :week’;l Voii—1 = ‘\‘Homework 2 is due next’j’)
Y Y

Next word Context

* Suppose we have a set of N sentences {y(i)}livzl , where y() = [yl, ,yTi] is a
sentence of length T;

* If IV is the set of all possible words, then we can represent each word using a
one-hot vector with size |V| X 1

e Then using a word embedding matrix E € RP*IVl we can retrieve the word
embedding associated to the current word

* This provides a way for us to go from a word to its mathematical representation

Application of RNNs: Next Word Prediction

* We want each time step of the RNN to select the next word y; from our
vocabulary, which is a discrete choice. In this case, we can use the Softmax
function for modeling the distribution P(y; | z;)

e Using BPTT, we apply cross-entropy loss on the prediction of each timestep

et — Ext
zy = g(Az_q + Wey)
y: = Softmax(Cz;)

112”

Y1
1

— Z1 —

t
€1
t
X1

“Homework”

o:_”

IS

o: 7

IS
Y2
t
Zy
1
€2
t
X2
((2”

lld ue” ”neXt”

Y3 §Z!
Al Al

lld ue” ((neXtH
Y3 Va4
t t
Z3z T Zy
t t
€3 €4
t t
X3 X4

l(iS” ((d ue”

“week”

Y5

True next word

’} l5 Loss function:

llwee k”

Vs

t

— 7z
t

€5

t

X5

“next”

T
LON=). L Gu)

Predicted outputs

Hidden states

Word embeddings

Input text

Application of RNNs: Text Classification

* Another application of RNNs is to summarize the whole sequence into a single
category.

* For example, given the title of a news article, predict the news category
* The entire model can be summarized by:

A\

Category:
e, = Ex 1 Food
t t Softmax
Zt = g(AZt—l ~+ Wet) 4
}7 — SOftmaX(FC(ZT)) Fully C(c;‘rér)lected

Zo . 41 - Z TTTTTTTT "~ ZT
1 1 “
€1 €2 er
Title: “New Ice Cream T T T
truck showed up in Amy X1 X2 XT

Gutmann Halll” “New” “Ice” “

Issues with RNN: Exploding/Vanishing Gradients

* While RNNs can capture long-term dependencies, training can be challenging

* Consider a simple RNN model with z; = g(Az;_ 1 + Wx,)
output at the last iteration: y = Czyp
* What happens to gradient 27’6 as you go back in time? P > [e y
| |
Zo - Z — . 42 T TTTTTTTTT - Zr
X1 X2 XT

0L 0 0 dy 0dL 0L 0L
ZZ Z3 Y — ATATAT CT — = (CAT—l)T —
(’)Zl aZ1 622 0ZT ay T 8Y% d

If the eigenvalues of A are less than 1, gradients vanish;
If greater than 1, gradients explode.

Assuming g = identity

Exploding/Vanishing Gradients: LDS case

* More generally,

0L _ car-oyrOL _ 9L _ 0z ok 0% o a7~ o 9L
0z, 09 0A 0A 0z, Lui0A

t t

* Let 4;(A) be the maximum eigenvalue of A.
* For any initial condition zy and alarge T — o

* Exploding: If [21(4)| > 1, AT will grow to infinity
e Vanishing: If |1;(4)]| < 1, AT will diminish to zero

* Hence, the gradient involving AT terms will also either explode or vanish.

Issues with RNN: Vanishing Gradients

* We have to backpropagate through many gradient terms to reach the first time
step

* This means long-range dependencies are difficult to learn (although in theory
they are learnable)

* Solutions:
» Better optimizers (e.g., second order or approximate second order methods)
* Normalization (at each layer to keep gradient norms stable)

* Clever initializations (e.g., start with random orthonormal matrices to prevent gradients
from vanishing)

* Alternative parameterization: LSTMs and GRUs

Introduction to Long Short-Term Memory (LSTM)

e Recap of RNN: chain of repeating modules of neural network
* |In standard RNN, the repeating network is just a single tanh layer

Zi_q Zt Zt41
t | t
< N N N
— (> —
A | A
_ J O\ J

© ® &

* Motivation: Vanishing gradients happen because we multiply many gradients
across time, and we want some ways to prevent that

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

* LSTM introduces cell states c;

* Each repeating module has three gates to update and control the cell state: forget gate,
input gate, and output gate

Bl Z; Ziiq fe = O-(Wf[zt—l:xt])
T 1 T ir = o(Wilze—q1, x¢])
. ANouna— AN N, & = tanh(Welze, %))
A . A Ctift*ct—l_l'lt*ct
[(5> o] Or = O-(WO [Zt—lvxt])
\| Ve) >\| > Zz = 0o¢ x tanh(cy)
& () &

L1 O — >

Neural Network Pointwise Vector
Layer Operation Transfer Concatena te Copy

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Cell State

* Cell states ¢;

* Runs straight down the entire chain, with
only some linear interactions

* In this way, information can flow through
time without gradients vanishing

0 0 —m > <

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

* To update and control the cell
states, LSTM introduced gates:

* A sigmoid neural network and a
pointwise multiplication operation

* The sigmoid layer outputs
numbers between 0 and 1,
controlling how much information

could go through

—®—
!
|

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Forget Gate

* Forget gate controls how much information to forget from the previous
cell state ¢;_4

fe = U(Wf [Z¢—1, xt])

© — >

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Input Gate

* Input gate decides which new information to store in the cell state

Ly

o(W;|z,_1, x¢]) Then update cell state by
Ct

tanh(M/c [Zt_l,xt]) Ce = ft * Ce—1 + it * Ei—

Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Output Gate

e Output gate decides what to output

0r = oW ze—q, x¢])

z; = 0; * tanh(c;)

Colah. Blog. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Why LSTMs work

* Forget gate f;: decides what to forget from the previous cell state
* Input gate i;: decides what new information to add
* Output gate o;: decides what to output to the next layer

* Constant path through cell states c; helps prevent vanishing gradients

fe = U(Wf [Z:1, %:]) Forget gate

i, =o(W;lz._1,x:]) Input gate

¢ = tanh(W,[z¢_q, x¢])

C¢ = ft ¥ Cpq + 1 * C; Update cell state
o, = o(W,[z,_1, x:]) Output gate

Z; = 0y * tanh(c¢;)

Other Variants: Gated Recurrent Neural Networks

* Another famous variant of the vanilla RNNs is Gated Recurrent Neural Network
* Instead of a memory cell, it uses what’s known as a Gated Recurrent Unit (GRU)

* On a high level, rather than using forget, input and output gates like LSTM
* GRU uses a weighted sum of two hidden states

z; =1 —5,) Oz, + s OF, where Z; = tanh(W [x; ;1 © z;_1])

where s; denotes the update gate, i

1 denotes the reset gate \«1 _) :

* Empirically, GRUs perform just f 29 }
as well as LSTMs, but much TN 4@"‘,/—’ Z <IN
more efficient because they > — > 0UT >OUT
have fewer gates (a) Long Short-Term Memory (b) Gated Recurrent Unit

Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” (2014) : https://arxiv.org/pdf/1412.3555v1.pdf

Gated Recurrent Neural Networks

* Gated Recurrent Unit (GRU) has two gates:

* Update gate s;: decides how much the unit update its activation
S¢ = 0 (Wsxy + Uszi—1)

* Reset gate 7;: decides how much information to forget (reset)
re =oWexy + Upzp_q)

* Hidden state z; is updated by a weighted sum of the previous activation z;_; and
a candidate activation Z;:

zt = (1—5) Oz + 5 O L <
zy = tanh(Wlx; ;1 © z¢-1]) }5

where (® is an element-wise multiplication
4@*‘/* 7 <IN
r
>OUT

(b) Gated Recurrent Unit

Chung et al. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” (2014) : https://arxiv.org/pdf/1412.3555v1.pdf

Other Variants: Bidirectional-RNNs
 Vanilla RNNs/LSTMs only go forward intimet = 1,2, ..., T

* This makes it hard trajectories with long histories, i.e., when T is large

* Proposed Modification: To have another trajectory that goes backward in time
* And the output P(y¢ | Ztorward, Zbackward) depends on forward and backward hidden

states
* Intuition from NLP: knowing a word 47 Poes K Py
means knowing what comes before % % %
and after the word Bidirectional 4 LSTM ‘—-<d- LstvM |« -- < LstM <
* Experiments show this reduces raver i 1 i 1 i 1
the vanishing gradient problem T T T
Laper 5 = 5 . st

*Figure source: lhianle et al. “A Deep Learning Approach for Human

Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging." (2015). Activities Recognition From Multimodal Sensing Devices.” (2020).

Other Variants

* Conclusion: Once you know what the building blocks are, you can create different
variants that are suitable for your task

* This is also not limited to RNNs. As we will see in next lecture, for example, we
can combine RNNs with VAEs for more complicated tasks

